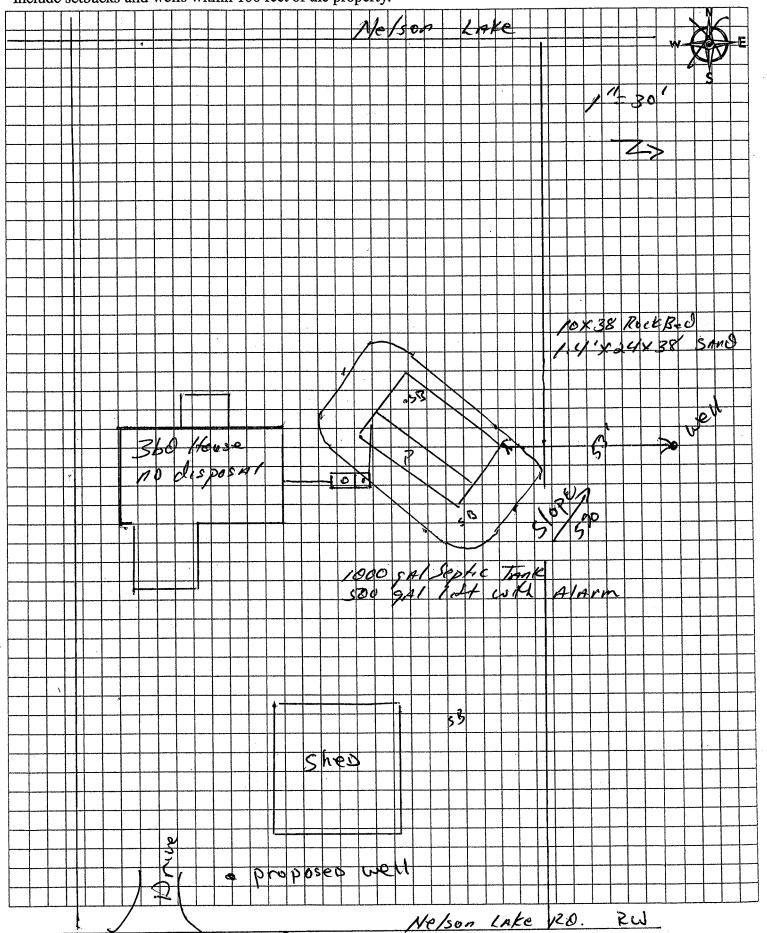
RECEIVED

SEP 0 5 201215 Take Ave,

060192000

PARCEL
APP SEPTIC
YEAR
SCANNED
LAKE

060192000 Phone (218)-846-7314; Fax (218)-846-7266


20NING 1. PROPERTY DATA (as it appears on the tax sta Parcel Number(s) of property where the system will be	
Is this a split of an existing property? Yes (No (If yes and a parcel number has not yet been assigned,	indicate the main parcel number from which the new parcel was split.)
Section 15 Township 138 Range 43	Township Name Cormovant
Lake Name <u>Melson</u>	Lake Classification _ Pv
Legal Description: Pt Govt Lot 2	
Project Address: 14493 Nelson Lak	ce Rd Lake Park
2. PROPERTY OWNER INFORMATION (as it a Owner's First Name	ppears on the tax statement, purchase agreement or deed) Owner's Last Name _ Bouskee
Mailing Address P.O 104	City, State, Zip Lake Park, mn 56584
Phone Number 218 - 279 - 2359	<u> </u>
3. DESIGNER/INSTALLER INFORMATION	
Designer Name Ranoy Anderson	Company Name Anderson on-site License # 634
Address P.O 1421 Detroit LAkes	Phone Number 849 3072
Installer Name TODD Boit	Company Name License #
Address	Phone Number
4. SYSTEM DESIGN INFORMATION	
System Status	What will new system serve? Check one
Vacant Lot-No existing system-new structure Replacement – structure removed and being ret Failing –Replacement- cesspool/seepage pit or Enlargement of system-Undersized Repairs Needed to existing Additional system on property	other Commercial (Non-resort) Other explain below
Design Flow 450 Gallons Per Day Number of Bedrooms Garbage Disposal Yes No Dishwasher Yes No Lift station in House Yes No Grinder pump in House Yes No	Well Depth <u>fo be On Moriginal Soil</u> Compacted Soil Depth of other wells within
1500 gal Compartmented Tank	gal Separate Lift Station gal Holding Tank Existing tank w/new Additional Tank Existing tank w/new Lift Station Holding Tank with Privy (This # will be reported to MPCA at end of year)

						• *			
								PARCEL APP	SEPTIC
m an i			~	1			•	YEAR	SERTIC
Type of Drain		ull Size of Drain		uced/Warrant		T	-hh		<u> </u>
Rock T	er Trench	sq ft_sq ft		sq ft sq ft			cnamber Rock		
Gravell		sq ft		sq ft		Deh ii 01	. RUCK		
→ Mound		912 sq ft		34 10	•	-	,,,,		
Pressur		sq ft	***			Alarm?	Yes <u></u>	No	
Seepag		sq ft	***			Type of	Alarm Ple		
At-grad		sq ft	***			Size of I	ift Pump _ 🎸	9 gpm e	15 Genso
Alterna		sq ft	*** ***A1	tach Workshe	eets	Size of I	ift Line	10	
Perforn	nance								
				ED SETBAC					
D'-4 4- 37	r - 11		TANK <	DRAINI					
Distance to W			10%						
Distance to Bu Distance to Pr					<u> </u>				•
Distance to Ol			125		<u> </u>				
Distance to Or			-/2/		0 +				•
	etland/Protecte	ed Water							
	. ,		,	. 9					
Perc Rate	24	Soil Sizing F	actor	1.67		*If SSF o	ther than .83,	attach Perc Test	Data
	(three are requ	ired)							
Depth	Texture	Color	Structure		Depth		Texture	Color	Structure
0-18	10Am		Block	<u> </u>	0 -	12	loam		Blocky
18.21	loam	254 4/4	, 11		12.	20	loam		
21-28	C/MY 10AM	2.545/4	11		20+	<u>.</u>	10Am	2.545/4	mi Hed
mo A	111	16		100					
					99		.1		
Depth	Texture	Color	Structure		Depth		Texture	Color	Structure
0-16	loam	104242	1) lock	7					·
16.21	loam	104242 202544	W II						
21 +	no Ho	29						·	
~ (77101700						-		
U of MN				sure beds, se No	epage be	ds, at-gra	ades or Type l	V or Type V s	ystems. Are the
/ DECICAL	enic Centre	TIED OT A TESM	TA JOS						
		TED STATEM	EI/I	•				4	
I RAN	Dy And	erson	certify th	at I have com	pleted the	e precedi	ng design worl	k in accordance	with all
· 	me of Designer	·····		x xxw i V VVIII	.P	- p. 000ar			3
			limited to M	Iinnesota Cha	pter 7080	and the	Becker Coun	ty Individual Se	ewage Treatmen
System Ordin			 -					•	_
							-	2. 10	,
1/1	<u> </u>	····						1512	
Klanatura of I	Designer						Dat	e ·	

CIZETOII	OF	DDODEDTV
SKEICH	Ur	PROPERTY

Please sketch all structures and septic systems on the property; Include setbacks and wells within 100 feet of the property.

PARCEL	
APP	SEPTIC
YEAR	2012

COUNTY OF BECKER

Planning and Zoning

915 Lake Ave, Detroit Lakes, MN 56501 Phone: 218-846-7314 ~ Fax: 218-846-7266

SSTS STATEMENT - # OF BEDROOMS AND WATER-USE APPLIANCES
Note: Form must be legible and completed in ink

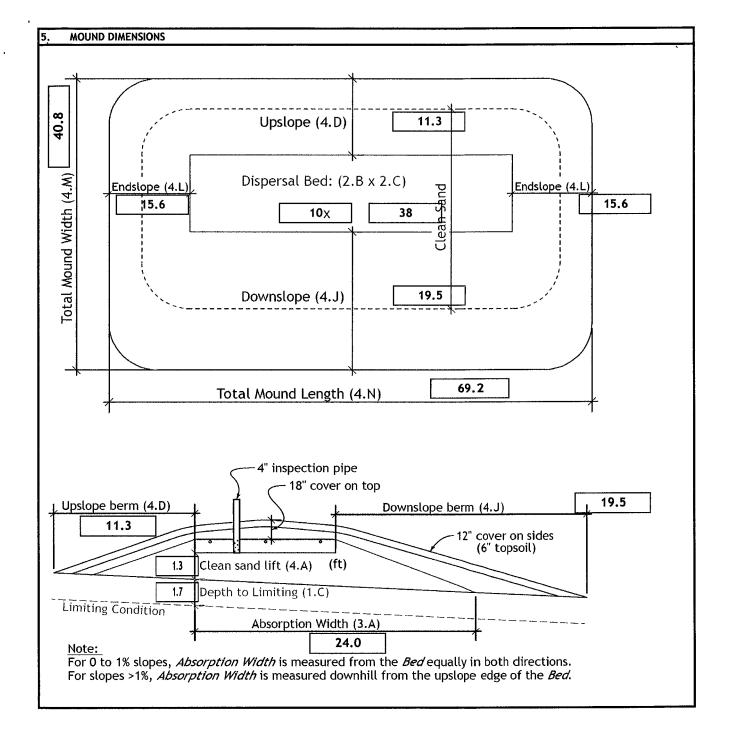
Property Owner Name(s): Mark + Vick' Boushee	
Address: 14493 Nelson Lake Road City, State, Zip: Lake Park, MN 56554	
Phone: 218-179-7359 Alt. Phone: 218-779-7358	
Legal Description:	
Lake/River: Tax Parcel No	
Property Address:	
Definitions:	
Bedroom – any room or unfinished area within a dwelling that might reasonably be used as a sleeping room. Lofts and unfinished basements (with at least one egress window and/or door) are counted as bedrooms. Water-use Appliances – installed or anticipated: e.g. automatic washer dishwasher water conditioning unit) whirlpool bath, garbage disposal, or self-cleaning humidifier in furnace. Note: A dishwasher with a built-in garbage disposal counts as two (2) water-use appliances. Existing # of bedrooms: + # of bedrooms yet to be constructed: = Total # of	
bedrooms to be serviced by the SSTS: (min. # bedrooms allowed by State is two)	
Existing # of water-use appliances: 2 List each:	
I (we) do hereby swear and affirm that the above-stated number of bedrooms and water-us appliances exist and/or will be installed in the residence located on the property listed on the document such that they will be serviced by the subsurface sewage treatment system (SSTS) the will be designed for and connected to said residence and installed on said property.	is
Property Owner(s) Signature(s) Date	_

OSTP Design Summary Worksheet

Prope	rty Owner/Client: Mar	k Boushee		Pro	oject ID:		, , , , , ,
Site A	ddress: 14493 Nels	on Lake Rd. Lake Park,	MN 56554				
1.	AVERAGE DESIGN FLOW:						
A.	Design Flow: 450	Gallons Per Day (GPD) 1000 Gallons	Note: The estimated desig factor. For long term perfo 60% of this value.	n flow is considered a p ormance, the average da	eak flow rate inclu ily flow is recomm	ding a saj ended to	ety be <
В.	Septic Tank capacity:	Gallons	·	r		1	
c.	Number of Septic Tanks or C Type of Soil Treatment and Disper		Type of Distribution*	t Screen & Alarm?	Optional]	
	○ Trenches ○ Bed	Mound O At-Grade	O Gravity Distribution	Pressure Distribution-Lev	el O Pressure	Distribution	n-Unlevel
	O Drip Distrib. O Holding Tar	N O Other:	* Selection Required	Benchmark Elev =	100	ft	
		System Type	В	enchmark Location:			
			F3 Towns V	Type of Distribution A	Nedia:		ļ
	Type I Type II	☐ Type III ☐ Type IV	☐ Type V	·····	rock		
D.	Pump Tank 1 Capacity:	Gallons	Pump Tank 2(Capacity:	Gallons	5	
2.	SITE EVALUATION:			<u> </u>			
<u> </u>	· · · · · · · · · · · · · · · · · · ·	20 inches	1.7 ft Eleva	ation & Location of L	imiting Laver:		ft
A.	Depth to Limiting Layer:			f	drainfield a	L	
В.	Measured Percent Land Slop	De: 5.0 %	0.0	Location:	urannielo d		
C.	Soil Texture:	loam	Perc Rate:	MPI			
D.	Soil Hydraulic Loading Rate:	0.60 GPD/	/ft ² E. Contour Loa	ading Rate 1	2.0 Gal/ft		
3.	DESIGN SUMMARY						
ļ			rench Design Summary				
	Dispersal Area	ft ² S	Sidewall Depth	in Trenc	h Width		in
	Total Lineal Feet	ft Numbe	er of Trenches	Maximum	Trench Depth		in
			Designe	r's Max Trench Depth		in	
			Bed Design Summary				
	Absorption Area	ft ² Me	edia Below Pipe		Length		ft
	Bed Width	ft Maximum Bed	Depth	in Designer's	Max Bed Depth	<u></u>	in
			Mound Design Summary				
<u> </u>	Absorption Area	375 ft ² Be	ed Length 38	ft Bed Width	10.0	ft	
1	Absorption Width	24.0 ft Clean Sa	and Lift 1.4	ft Berm W	idth (slope 0-1%)	ft
			·	ft Ends	ope Berm Width	1:	i.6 ft
	Total System Length	69 ft Total Syst	em Width 41	ft			
		At	t-Grade Design Summary				
	Absorption Bed Width	ft Absorpt	ion Bed Length	ft Syste	m Height		ft
	Absorption Bed Area	ft ² Upslope Be	erm Width	ft Downslop	e Berm Width		ft
	Endslope Berm Width	ft System	Length	ft System V	Vidth		ft

OSTP Design Summary Worksheet

Pressure Distribution Summary										
No. of Perforated Laterals	3	Perfo	ration Spacing	3 ft	Perforation Diameter 1/4 in					
Lateral Diameter	2.00	in	Supply Pipe Diame	eter 2.00	in Minimum Dose Volume 0					
Flow Rate 2	9 GPM	Total	Head 15	ft	Maximum Dose Volume 112.5					
			Holding Tan	ks Only						
Number of Holding Tar	nks		Total Volume of H	olding Tanks	gallons					
High Level Alarm?										
4. Additional Info for Ty	pe IV/Pretreatr	ment Design								
Type of Pretreatment	Unit Being Insta	alled:								
				·	he effluent X 8.35 ÷ 1,000,000					
gpd X		mg/L X	8.35 ÷ 1,000,000	-	lbs BOD/day					
Calculate System Org	anic Loading :	lbs. BOD/day	+ Bottom Area =	lbs/day/ft ²						
lbs/day	÷	ft ² =	lb	s/day/ft²						
Comments/Special Design Co	nsiderations:									
				•						
	<u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>									
I hereby certif	y that I have co	mpleted this v	ork in accordance	with all applical	ble ordinances, rules and laws.					
Randy And	erson	f.	· /		634					
(Docino		. // (V)	(Signature)		(License #) (Date)					


OSTP Mound Design Worksheet

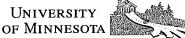
>1% Slope

1.	SYSTEM	SIZIN	G:				Proj	ect ID:					v 1	1.09.
4	. Design F	low (I	Flow & Soil - 1.	A):		45	i0	GPD		TAB	LE IXa	1		
B. Soil Loading Rate (Flow & Soil-3.C): 0.60						GPD/ft ²	LOADING RATES FOR DETERMINING BOTTOM ABSORPTION AREA AND ABSORPTION RATIOS USING PERCOLATION TESTS							
C	. Depth to	Limi	ting Condition:		ĺ	1.	7	ft	AND ABSORP	Treatmen		Treatment Le		
C	. Percent	Land .	Slope:			5.	0] _%	Percolation Rate	Absorption Area Loading	Mound	Absorption Area Loading	Mound Absorption	
E	. Design M	ledia	Loading Rate:			1.	2	GPD/ft ²	(MPI)	Rate (gpd/ft²)	Absorption Ratio	Rate (gpd/ft²)	Ratio	
F	. Mound A	bsorp	tion Ratio (Tab	le IXa):		2.4	40]	<0.1	-	1	-	1	
c	6. Design C	ontou	ır Loading Rate	:	Ì	12	.0	GPD/ft	0.1 to 5 0.1 to 5 (fine sand	1.2	1	1.6	1	
	ſ		Table I					•	and loamy fine sand)	0.6	2	1	1.6	
	ļ	MOUN	D CONTOUR LOAD	ING RAT	ES:				6 to 15	0.78	1.5	1	1.6	
	Measured	←- OD	Texture - deri			Contour Loading			16 to 30	0.6	2	0.78	2	
	Perc Rate	OR 	mound absorptio	n ratio		Rate:			31 to 45	0.5	2.4	0.78	2	
	≤ 60mpi		1.0, 1.3, 2.0, 2.	4, 2.6	, [≤12			46 to 60	0.45	2.6	0.6	2.6	
					┝				61 to 120	-	5	0.3	5.3	
	61-120 mpi	OR	5.0		,	≤12	ŀ		>120	L	•			
	≥ 120 mpi*		>5.0*		<u>, </u>	≤6 *		*Systems	with these values a loading	re not Type rate) is a re	-		ing Rate (line	ear
			DIA SIZING											
						12	Rate (1]ft + [gn Media Loading 1.2 g idth (2.B) = Bed	pd/ft ² =		dth 10 ft	i.	
						38	30	ft² ÷	10 ft	t =	38	ft	<u>.</u>	
0	. Select D	ispers	al Media:						roc	k				
E	. If using	a regi	stered product,	enter t	he (:ompone	nt Leng	th:		in ÷	12 =		ft	
F	. If using	a regi	stered product,	enter t	he (ompone	nt Widt	h:		in ÷	12 =		ft	
(3. Number	of Co	mponents per l	Row = B	ed L	ength (2	2.C) div	ided by Co	mponent Length	(4.J) (Rou	nd up)			
			ft	÷			ft =		compone	nts/row				
ŀ	۱ I. Number	of Ro	ws = Bed Widt	h (2.B)	divid	led by Co	ompone	nt Width	(4.K) (Round up)			te: CLR of 1		
	Adjust C	ontou	ır Loading Rate	on Desi	gn S	ummary	page ur	ntil this nu	mber is a whole	number	gal/ft	: results in ! wide bed.	9 foot	
	,		ft		_	$\stackrel{'}{}$. ft =		rows			wide bed.		
				-				L						
	i. Total Nu	ımber	of Component	s = Nun	ber	of Comp	onents	per Row 1	X Number of Row	S				
			 				=		componer	nts				

ABSORPTION AREA SIZING
Note: Mound setbacks are measured from the Absorption Area.
A. Calculate Absorption Width: Bed Width (2.B) X Mound Absorption Ratio (1.F) = Absorption Width
10.0 ft X 2.4 = 24.0 ft
B. For slopes >1%, the Absorption Width is measured downhill from the upslope edge of the Bed.
Calculate Downslope Absorption Width: Absorption Width (3.A) - Bed Width (2.B) = ft
24.0 ft - 10.0 ft = 14.0 ft
· MOUND SIZING
A. Calculate Clean Sand Lift: 3 feet minus Depth to Limiting Condition (1.C) = Clean Sand Lift (1 ft minimum)
3.0 ft - 1.7 ft = 1.3 ft Design Sand Lift (optional): 1.4 1.4
B. Calculate Upslope Height: Clean Sand Lift (4.A) + media depth (1 ft.) + cover (1 ft.) = Upslope Height
1.4 ft + 1.0 ft + 1.0 ft = 3.4 ft
D-34: Slope Multiplier Table
Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Upslope 3:1 3.00 2.91 2.83 2.75 2.68 2.61 2.54 2.48 2.42 2.36 2.31 2.26 2.31 2.26 2.31 2.26 2.31 2.26 2.31 2.36 2.31 2.26 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.36 2.31 2.30 2.31 2.30 2.31 2.30 2.31 2.30 2.31 2.30 2.31 2.31 2.31 2.31 2.31 2.31 2.31 2.31
DEHIT NATIO 4-11 4-101 3-03 3-17 3-47 3-35 3-12 3-12 3-12 3-12 2-10 2
Land Slope % 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Downslope 3:1 3.00 3.09 3.19 3.30 3.41 3.53 3.66 3.80 3.95 4.11 4.29 4.48 4.69 4.95 5.24 5.55 5.88 6.24 6.63 7.04 7.47 7.93 8.42 8.93 9.46 10.02 Berm Ratio 4:1 4.00 4.17 4.35 4.54 4.76 5.00 5.26 5.56 5.88 6.25 6.67 7.14 7.69 8.29 8.92 9.57 10.24 10.94 11.67 12.42 13.19 13.99 14.82 15.67 16.54 17.44
C. Select Upslope Berm Multiplier (based on land slope): 3.33 (figure D-34)
D. Calculate Upslope Berm Width: Multiplier (4.C) X Upslope Mound Height (4.B) = Upslope Berm Width
3.33 ft X 3.4 ft = 11.3 ft
E. Calculate Drop in Elevation Under Bed: Bed Width (2.B) X Land Slope (1.D) ÷ 100 = Drop (ft)
10.0 ft X 5.0 % ÷ 100 = 0.50 ft
F. Calculate Downslope Mound Height: Upslope Height (4.B) + Drop in Elevation (4.E) = Downslope Height
3.4 ft + 0.50 ft = 3.9 ft
G. Select Downslope Berm Multiplier (based on land slope): 5.00 (figure D-34)
H. Calculate Downslope Berm Width: Multiplier (4.G) X Downslope Height (4.F) = Downslope Berm Width
5.00 x 3.9 ft = 19.5 ft
I. Calculate Minimum Berm to Cover Absorption Area: Downslope Absorption Width (3.B or 3.C) + 4 ft. = ft
14.0 ft + 4 ft = 18.0 ft
J. Design Downslope Berm = greater of 4H and 4I:
K. Select Endslope Berm Multiplier: 4.00 (usually 3.0 or 4.0)
L. Calculate Endslope Berm (4.K) X Downslope Mound Height (4.F) = Endslope Berm Width
4.00 ft \times 3.9 ft = 15.6 ft
M. Calculate Mound Width: Upslope Berm Width (4.D) + Bed Width (2.B) + Downslope Berm Width (4.J) = ft
11.3 ft + 10.0 ft + 19.5 ft = 40.8 ft
N. Calculate Mound Length: Endslope Berm Width (4.L) + Bed Length (2.C) + Endslope Berm Width (4.L) = ft
15.6 ft + 38.0 ft + 15.6 ft = 69.2 ft
Comments:

OSTP Mound Materials Worksheet

Project ID:	v 11.09.22
A. Calculate Bed (rock) Volume: Bed Length (2.C) X Bed Width (2.B) X Dept	
38.0 ft X	10.0 ft X 1.0 = 380.0 ft ³
Divide ft ³ by 27 ft ³ /yd ³ to c	alculate cubic yards:
,	380.0 ft ³ ÷ 27 = 14.1 yd ³
Add 20% for constructability:	14.1 yd³ X 1.2 = 16.9 yd³
B. Calculate Clean Sand Volume:	, , , , , , , , , , , , , , , , , , , ,
Volume Under Rock bed: Average Sand Depth x Media Width x Media Len	gth = cubic feet
	0.0 ft X 38.0 ft = 627.0 ft ³
For a Mound on a slope from 0-1%	
Volume from Length = ((Upslope Mound Height - 1) X Absorption Width Bey	ond Bed X Media Bed Length)
ft -1) X X	ft =
Volume from Width = ((Upslope Mound Height - 1) X Absorption Width Beyo	nd Bed X Media Bed Width)
ft -1) χ X	ft =
Total Clean Sand Volume : Volume from Length + Volume from Width + Vo	
ft ³ +	ft ³ +ft ³
For a Mound on a slope greater than 1%	
Upslope Volume: ((Upslope Mound Height - 1) x 3 x Bed Length) + 2 = cul	
((3.4 ft -1) X 3.0 ft	X 38.0) ÷ 2 = 136.8 ft ³
Downslope Volume: ((Downslope Height - 1) x Downslope Absorption Widt	
((3.9 ft - 1) X 14	4.0 ft X 38.0)+2= 771.4 ft ³
Endslope Volume : (Downslope Mound Height - 1) x 3 x Media Width = cul	oic feet
(3.9 ft - 1) X 3.0 ft	X 10.0 ft = 87.0 ft ³
Total Clean Sand Volume : Upslope Volume + Downslope Volume + Endslo	pe Volume + Volume Under Media
136.8 ft ³ + 771.4 ft ³ + 8	7.0 $ft^3 + 627.0$ $ft^3 = 1622.2$ ft^3
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1622.2 ft ³ ÷ 27 = 60.1 yd ³
Add 20% for constructability:	60.1 yd ³ X 1.2 = 72.1 yd ³
C. Calculate Sandy Berm Volume: Total Berm Volume (approx): ((Avg. Mound Height - 0.5 ft topsoil) x Mound	Width y Mound Langth) + 2 - cubic fact
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
,	, , , , , , , , , , , , , , , , , , , ,
Total Mound Volume - Clean Sand volume - Rock Volume = cubic feet 4449.2 ft ³ - 16:	22.2 ft^3 - 380.0 ft^3 = 2447.0 ft^3
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	2447.0 ft ³ ÷ 27 = 90.6 yd ³
Add 20% for constructability:	90.6 yd ³ x 1.2 = 108.8 yd ³
D. Calculate Topsoil Material Volume: Total Mound Width X Total Mound Len	gth X .5 ft
40.8 ft X 6	9.2 ft X 0.5 ft =
Divide ft ³ by 27 ft ³ /yd ³ to calculate cubic yards:	1412.4 ft ³ ÷ 27 = 52.3 yd ³
Add 20% for constructability:	52.3 yd³ x 1.2 = 62.8 yd³


OSTP Pressure Distribution Design Worksheet

	trol Agency				B1-	-4 ID:						v 11.09.22
1.	Select Number of P				/zone:	ect ID:			Insulate	d di i pro bos		V 11.09.22
2.	(2 feet is minimum Select Perforation 5		t is maxin	num spaci	ing)	3.0	The Property of the Contract o	阿斯 斯		cove, di	1	1
3.	Select Perforation I		Size			1/4		Go tions spaced 3	apart 11	inamum 7° of rock		
4.	Length of Laterals			- 2 Feet.			_	6° of e		Perforation sp	K.ling: 2' to 3'	
	38 .	2ft	- [36]ft	Perforatio	on can not be closer	then 1 fo	ot from e	dge.		
5.	Determine the Num round down to the I				그 Divide th	-			•	-	Line 2) an	kd
	Number of Perforat			36	ft	. [3 ft	- [12	5paces		
6.	Number of Perforat	ions per L	ateral is	equal to	 1.0 plus :	the Number	r of Perforation Spa	ـــــا Line) ِ ces	5).	-		
	Perforations Per La	teral =	12	Space	es	+	1 = 13	Per	fs. Per La	teral		
	Check table below to verify the number of perforations per lateral guarantees less than a 10% discharge variation. The value is											
double if the a center manifold is used. Maximum Humber of Perforations Per Lateral to Guarantee < 10% Discharge Variation												
1/4 Inch Perforations 7/32 Inch Perforations												
Perfo	ration Spacing (Feet)			iameter (Perforation Spacing			iameter (I		
	2	10	114	115	30	60	(Feet)	11	154	21	34	68
	21/2	8	12	16	28	54	21/2	10	14	20	32	64
	3	8	12	16	25	52	3	9	14	19	30	60
		3/16 Inch	Perforatio Pipe D	ns Piameter (l	Inches)		Perforation Spacing	1/81	nch Perfora Pipe D	itions iameter (I	nches)	
Perfo	ration Spacing (Feet)	1	114	11/2	2	3	(Feet)	1	114	11/2	2	3
	2	12	18	26	46	87	2	21	33	44	74	149
	3	12	17	24	37	75	3	20	30 29	41 38	69	135
7.	Total Number of Pe				<u> </u>		l					
	Perforated Laterals					, 0, 44.0, 10 p				•		
	13 Perf.	Per Later	al X	<u> </u>	3	Number of	Perf. Laterals	=	39	Total N	mber of I	erf.
8.	Calculate the Squar			ion. Rea	ommend	ed value is	4-10 ft ² per perfor	ation.	-		Discharge (OPS foration Diame	ter
	Does not apply to a Bed Area = Bed Wi			th (ft)					Head (ft)		2/14 7/32 0.41 0.54	
	10 ft	х「	38	ft	-	380	ft²		1.5 2.0°	0.22	0.51 0.61 0.59 0.80 0.65 0.81	1.04
	Square Foot per Per	foration :	= Bed Area	a divided	by the 1	Total Numb	er of Perforations (Line 7).	3.0 4.0 5.0	0.32	0.72 0.90 0.83 1.13	1,47
	380 ft ²	٠ [39	perf	orations	=	9.7 ft²/perfe	orations	1 foot	Dwellings with perforations	3/16 Inch to 1/4	- 1
9.	Select Minimum Ave	erage Head	d:	1.0	ft	h	·····		2 feet	Other establish Inch to 1/4 Inc	1/8 Inch performents and MSTS perforations	with 3/16
10.	Select Perforation I	Discharge	(GPM) bas	sed on Ta	∟ ble III:		0.74 GPM per	Perforati	5 feet	Other establish perforations	ments and MSTS	with 1/8 linch
11.	Determine required					Number of :				n Dischai	ve (Line :	10).
		rations	x [0.74	-	er Perforat	,				3. (,-
12.	Select Type of Mani				<u></u>	☐ End	☐ Center					
							_ cana		1		able II	
13.	Select Lateral Diam				L	00 in					of Liqu	id in
14.	Volume of Liquid Pe			on Piping	::	0.170	Gallons/ft		ŀ	Pipe	Pipe Lic	luid
15.	Volume of Distribut = [Number of Performan			1) X Len	oth of L	oterals (Lin	ne 4) X			Diamet (inche:		Foot Ions)
	(Volume of Liquid P						,			1	0.0	045
	3 x	36	ft	x 0	.170	gal/ft	= 18.4	iattons		1.25		078 110
16.	Minimum Dose = Vol	lume of Di	stribution	Piping (L	ine 15)	X 4				2		170 380
	18.4 gais	X 4 =	. [73.4	Gallon	ıs			Ì	4		661
		m	anifold pipe	`			Cleanouts				```e	
			. /	;		\parallel /	,/^	lanifold pipe -			للس	R
R			>	Pipe	e from pum	P /				_		
dean ou	Its P		_	<u>~</u>		1						
	9			٠	ternate loc	ation	9				of pipe fro	m pump
	سسا				pipe from		9			Pipe fr	om pump	
Comm	ents/Special Design	Considerat	tions:			 						

OSTP Basic Pump Selection Design Worksheet

Control Agency Project ID: v 11.09.22 PUMP CAPACITY 2 O Gravity Pumping to Gravity or Pressure Distribution: Pressure Selection required 1. If pumping to gravity enter the gallon per minute of the pump: GPM (10 - 45 gpm) 2. If pumping to a pressurized distribution system: 29.0 GPM (Line 11 of Pressure Distribution) Soil treatment system & point of discharge 2. HEAD REQUIREMENTS A. Elevation Difference ft between pump and point of discharge: B. Distribution Head Loss: 5 ft (due to special equipment, etc.) C. Additional Head Loss: Table I. Friction Loss in Plastic Pipe per 100ft Distribution Head Loss Pipe Diameter (inches) Flow Rate Gravity Distribution = Oft (GPM) 1.25 1.5 Pressure Distribution based on Minimum Average Head 9.1 3.1 1.3 0.3 10 Value on Pressure Distribution Worksheet: 0.4 12 12.8 4.3 1.8 Distribution Head Loss Minimum Average Head 14 17.0 5.7 2.4 0.6 5ft 1ft 7.3 3.0 0.7 16 21.8 2ft 6ft 9.1 3.8 0.9 18 5ft 10ft 20 11.1 4.6 1.1 25 16.8 6.9 1.7 2.0 30 23.5 9.7 2.4 D. 1. Supply Pipe Diameter: 35 12.9 3.2 25 2. Supply Pipe Length: 4.1 40 16.5 20.5 5.0 45 E. Friction Loss in Plastic Pipe per 100ft from Table I: 6.1 50 7.3 55 2.23 ft per 100ft of pipe Friction Loss = 60 8.6 F. Determine Equivalent Pipe Length from pump discharge to soil dispersal area discharge 65 10.0 point. Estimate by adding 25% to supply pipe length for fitting loss. Supply Pipe Length 70 11.4 (D.2) X 1.25 = Equivalent Pipe Length 13.0 75 85 16.4 25 ft 1.25 31.3 Х 95 20.1 G. Calculate Supply Friction Loss by multiplying Friction Loss Per 100ft (Line E) by the Equivalent Pipe Length (Line F) and divide by 100. Supply Friction Loss = 0.7 2.23 ft per 100ft 31.3 ft 100 H. Total Head requirement is the sum of the Elevation Difference (Line A), the Distribution Head Loss (Line B), Additional Head Loss (Line C), and the Supply Friction Loss (Line G) 14.7 9.0 5.0 0.7 ft 3. PUMP SELECTION 29 15 feet of total head. A pump must be selected to deliver at least GPM (Line 1 or Line 2) with at least Comments:

PERCOLATION TEST SHEET

Test hole lo	cation <u>Propo</u>	sep Organ	Rie GHole #	: r	Date test hole was prepared:	
Depth of ho					le: in	
Soil Data fr	om test hole:					
		depth, inches		soil texture:	soil col	or
Method of s	scratching sidew	all:]	Depth of pea size	gravel in bottom of hole:	inches
Date and ho	our of initial wat	er filling:	I	Depth of initial w	vater filling: above	hole bottom
Method use	d to maintain 12	" of water depth	in hole for 4 h	ours:		
Percolation	test conducted b	y: Randy	mesor		Percolation test started at	_ (am / pm).
				inch		
			WATER	WATER		conversions
TIME	(MINUTES)	WATER DEPTH	DROP (fraction)	DROP (decimal)	PERC RATE CALCULATION	
		C		~ 2		1/16 = .06
	START 20	71/8	7/8	(83 app	$\frac{20}{\text{TIME}} \div \frac{83}{\text{DROP}} = \frac{24}{\text{PERC}} A$	1/8 = .13
					(Decimal)	3/16 = .19
	REFILL 20	73/16	13/16	.81	$\frac{20}{\text{TIME}} \div \frac{8}{1000} = 24.4 \text{ B}$ (Decimal)	1/4 = .25
	REFILL	8 1/8	7/8	0.2		5/16 = .31
	_20	7/8		, 83	$\frac{2U \div \sqrt{83}}{\text{DROP}} = \frac{24C}{\text{PERC}}$ (Decimal)	3/8 = .38
	REFILL				<u>.</u> . D	7/16 = .44
					TIME DROP PERC (Decimal)	1/2 = .5
	REFILL				TIME DROP PERC	9/16 = .56
	REFILL				(Decimal)	5/8 = .63
					TIME DROP PERC	11/16 = .69
	REFILL				(Decimal)	3/4 = .75
					TIME DROP PERC	13/16 = .81
	REFILL					- 7/8 = .88
					TIME DROP PERC	15/16 = .94
·			Т D.	(01.14	(Decimal)] .6,,,,,,,
A,B,C			1en Percen	t Calculation	*	·····
				B,C,D		
		lest # of ABC		Largest # o	f BCD Smallest # of BCD	
C,D,E	of ABC × 0.1	.0 =			of BCD × 0.10 =	
				D,E,F		
		lest # of CDE		Largest # o	f DEF Smallest# of DEF	
Smallest# E,F,G	of CDE × 0.1	U ==			of DEF × 0.10 =	
Largest # o	f EFC ====	lest # of EFG		F,G,H		
o t Torriginal				Largest # o	FGH Smallest # of FGH	
Smallest#	of EFG × 0.1	V =	j	Smallest #	of FGH × 0.10 =	

^{*} If the top number in each set of boxes is larger than the bottom number, take another reading. If the top number is equal to or smaller than bottom number, average the 3 numbers for the perc rate.

Application Approved by	*	Jeb 11	16the	Date: 9-6-13
Application Approved by Amount Paid	15000	Receipt Number	1019146	Permit Number
NOTES:			51363	8
•				
******	******	******	******	************
		INSPECTIO	N REPORT	•
Home Information				
Does the structure cont	ain any of the followi	ng elements?	washan : Ma	No
Grinder pump	oser Yes Yes/	No Dish NoLift	washer Yes	No YesNo
Effluent screen installe	d? Yes —			cturer
٠	/ . /		(
Alarm required?	No	Alarm Type		Alarm manufacturer
	.]/			
Lift pump in system?	<u>/</u> Yes N	No Pump manufa	acturer	
Number of bedrooms				
Number of bedrooms _	····			Aggina
Component Informati	ion /		_	
Tank size	1500 2/0	Tank manufa	$\epsilon_{ ext{turer}}$	ergus talls
		· · · · · · · · · · · · · · · · · · ·		Agg Ind. Tergus Falls - 1. 10'x38' mond
Drainfield size	380 82, t	7,	•	10'x 38' mond
Drainfield me	dium	_ Medium man	ufacturer	10. × 38 Mond
Drainneid me	dium size/depth			
Soil Verification	•	•		
Vertical separ	ation verified for Bor	ing #1 on	Depth	+36"
Vertical separ	ation verified for Bor	ing #2 on	Depth	
Vartical capar	ation verified for Dor	ing #3 on	Donth	
vertical sepai	ation vermed for Doi	mg #5 on	Depui	
Setback Verification				
		TANK	DRAINFIELI)
Distance to W	-	+50	+50	_
Distance to B		<u>+10</u>	+20	-
Distance to Pr Distance to O	- •	<u>+/0</u>	+10	<u>-</u> `
Distance to Or		<u>+75</u>	+13	-
	etland/Protected Wat	ter $\frac{3U}{w}$	NA	- .
	1 /			
	0/1/1	R.		I O Well
Date System Installed	7/11/10	Installer <u>1)</u> 0	17 CTC	Inspector factor
	· · · · · · · · · · · · · · · · · · ·			<i>(</i>
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	·	*******	*****	**************************************
_		CERTIFICATE O	F COMPLIANC	E.
· ·	·			
() Certificate Is Herel				
(X) Certificate is Her	eby Granted Based v	pon the Application, a	ddendum from, pl	ans, specifications and all other supporting d
with property mainten	ince, this system can			ever, this is not a guarantee.
Fair to	th	7.5	ts uspec	ton 9/11/12
Signature		Title	· /	Date
~	nce is not valid unles	s signed by a Registere	- /	

.

٠.

: